Chapter 3 - Operations with Decimals - Practice Test

Write each decimal in word form.

1. 0.07

Write in word form. seven hundredths

2. 8.051

Write in word form.

eight and fifty-one thousandths

3. six tenths

Write in standard form.

0.6

Write in expanded form.

 (6×0.1)

4. two and twenty one thousandths

Write in standard form.

2.021

Write in expanded form.

$$(2 \times 1) + (0 \times 0.1) + (2 \times 0.01) + (1 \times 0.001)$$

5. SCIENCE The mass of a particular chemical sample is given as 4.0023 grams. Write the mass in word form.

Write in word form.

four and twenty-three-ten-thousandths

Use >, <, or = to compare each pair of decimals.

6. 2.03 • 2.030

Place a zero to the right of the last digit of 2.03 so the two numbers have the same number of digits.

$$2.03 \rightarrow 2.030$$

$$2.030 \rightarrow 2.030$$

Compare the corresponding digits.

Since
$$0 = 0$$
, $2.03 = 2.030$.

7. 7.960 • 7.906

7.960

7.906

Compare the corresponding digits.

Since 6 > 0, 7.960 > 7.906.

8. TEST PRACTICE Dion recorded the daily high temperatures for Phoenix, Arizona, over five days in the table below.

Day	Temperature (°F)
Monday	109.8
Tuesday	108.9
Wednesday	111.08
Thursday	108.92
Friday	111.0

Which of the following shows the daily high temperatures in order from least to greatest?

- **A** 108.9°F, 108.92°F, 109.8°F, 111.0°F, 111.08°F
- **B** 108.92°F, 108.9°F, 109.8°F, 111.0°F, 111.08°F
- C 108.9°F, 108.92°F, 109.8°F, 111.08°F, 111.0°F
- **D** 108.92°F, 108.9°F, 109.8°F, 111.08°F, 111.0°F

Place a zero to the right of the last digits so the numbers all have the same number of digits.

- $109.8 \rightarrow 109.80$
- $108.9 \rightarrow 108.90$
- $111.08 \rightarrow 111.08$
- $108.92 \rightarrow 108.92$
- $111.0 \rightarrow 111.00$

The temperatures from least to the greatest are 108.9°F, 108.92°F, 109.8°F, 111.0°F, 111.08°F.

- The answer is A.
- **9.** 27.35; tens
 - 27.35 rounded to the nearest ten is 30.
- **10.** 3.4556; thousandths
 - 3.4556 rounded to the nearest thousandth is 3.456.
- 11. 38.23 + 11.84; rounding

$$38.23 + 11.84 \approx 38 + 12 = 50$$

12. \$75.38 – \$22.04; front–end estimation

$$$75.38 - $22.04 \approx $70 - $20$$

= \$50

13. 6.72 + 7.09 + 6.6; clustering

$$6.72 + 7.09 + 6.6 \approx 3 \times 7$$
$$= 21$$

Name:

Subtract.

$$\overset{4}{7}.8$$

$$\overset{3}{0}.92$$

$$\frac{34}{0.408}$$

Name:

- **20. MULTIPLE CHOICE** Armando and his 3 friends ordered a 4-foot sub for \$25.99, 4 large drinks for \$1.79 each, and a salad for \$5.89. Which of the following represents the total cost, not including tax?
 - **A** \$134.68
 - **B** \$39.04
 - C \$37.25
 - **D** \$33.67
 - $4 \times 1.79 + 25.99 + 5.89$
 - Multiply.
 - 1.79
 - <u>× 4</u>
 - 7.16
 - Add.
 - 7.16 + 25.99 + 5.89 = 39.04
- **21.** 7.2 ÷ 3
 - $\frac{2.4}{3)7.2}$
 - -6
 - 12
 - <u>-12</u>
 - 0
- **22.** $0.45 \div 15$
 - $\frac{0.03}{15)0.45}$
 - -0
 - 04
 - $\frac{-0}{-0}$
 - 45 -<u>45</u>
 - 0

Name:

23.
$$36.08 \div 8.2$$

$$\begin{array}{r}
 4.4 \\
 8.2 \overline{\smash{\big)}36.08} \rightarrow 82 \overline{\smash{\big)}360.8} \\
 -328 \\
 \hline
 328 \\
 -328 \\
 \hline
 0
\end{array}$$

$$4.15)10.79 \rightarrow 415)1079.0$$

$$\frac{830}{2490}$$

$$-2490$$

$$0$$

25. ANIMALS The greyhound can run as fast as 39.35 miles per hour. Without calculating, would about 12, 14, or 16 be a reasonable answer for the number of miles a greyhound could run at this rate in 0.4 hour? Explain your reasoning.

about 16; Sample answer: 39.35 is almost 40. 40×0.4 is the same as 4.0×4.0 or 16.